The Drosophila embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm.

نویسندگان

  • M Golembo
  • E Raz
  • B Z Shilo
چکیده

The Drosophila EGF receptor (DER) is activated by secreted Spitz to induce different cell fates in the ventral ectoderm. Processing of the precursor transmembrane Spitz to generate the secreted form was shown to be the limiting event, but the cells in which processing takes place and the mechanism that may generate a gradient of secreted Spitz in the ectoderm were not known. The ectodermal defects in single minded (sim) mutant embryos, in which the midline fails to develop, suggested that the midline cells contribute to patterning of the ventral ectoderm. This work shows that the midline provides the site for Spitz expression and processing. The Rhomboid and Star proteins are also expressed and required in the midline. The ectodermal defects of spitz, rho or Star mutant embryos could be rescued by inducing the expression of the respective normal genes only in the midline cells. Rho and Star thus function non-autonomously, and may be required for the production or processing of the Spitz precursor. Secreted Spitz is the only sim-dependent contribution of the midline to patterning the ectoderm, since the ventral defects observed in sim mutant embryos can be overcome by expression of secreted Spitz in the ectoderm. While ectopic expression of secreted Spitz in the ectoderm or mesoderm gave rise to ventralization of the embryo, increased expression of secreted Spitz in the midline did not lead to alterations in ectoderm patterning. A mechanism for adjustment to variable levels of secreted Spitz emanating from the midline may be provided by Argos, which forms an inhibitory feedback loop for DER activation. The production of secreted Spitz in the midline, may provide a stable source for graded DER activation in the ventral ectoderm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncoupling neurogenic gene networks in the Drosophila embryo.

The EGF signaling pathway specifies neuronal identities in the Drosophila embryo by regulating developmental patterning genes such as intermediate neuroblasts defective (ind). EGFR is activated in the ventral midline and neurogenic ectoderm by the Spitz ligand, which is processed by the Rhomboid protease. CRISPR/Cas9 was used to delete defined rhomboid enhancers mediating expression at each sit...

متن کامل

Argos transcription is induced by the Drosophila EGF receptor pathway to form an inhibitory feedback loop.

Argos is a secreted molecule with an atypical EGF motif. It was recently shown to function as an inhibitor of the signaling triggered by the Drosophila EGF receptor (DER). In this work, we determine the contribution of Argos to the establishment of cell fates in the embryonic ventral ectoderm. Graded activation of DER is essential for patterning the ventral ectoderm. argos mutant embryos show e...

متن کامل

Influence of Drosophila ventral epidermal development by the CNS midline cells and spitz class genes.

The ventral epidermis of Drosophila melanogaster is derived from longitudinal rows of ectodermal precursor cells that divide and expand to form the ventral embryonic surface. The spitz class genes are required for the proper formation of the larval ventral cuticle. Using a group of enhancer trap lines that stain subsets of epidermal cells, it is shown here that spitz class gene function is nece...

متن کامل

The CNS midline cells control the spitz class and Egfr signaling genes to establish the proper cell fate of the Drosophila ventral neuroectoderm.

The spitz class genes, pointed (pnt), rhomboid frho), single-minded (sim), spitz (spi)and Star (S), as well as the Drosophila epidermal growth factor receptor (Egfr) signaling genes, argos (aos), Egfr, orthodenticle (otd) and vein (vn), are required for the proper establishment of ventral neuroectodermal cell fate. The roles of the CNS midline cells, spitz class and Egfr signaling genes in cell...

متن کامل

EGF receptor signaling regulates pulses of cell delamination from the Drosophila ectoderm.

Many different intercellular signaling pathways are known but, for most, it is unclear whether they can generate oscillating cell behaviors. Here we use time-lapse analysis of Drosophila embryogenesis to show that oenocytes delaminate from the ectoderm in discrete bursts of three. This pulsatile process has a 1 hour period, occurs without cell division, and requires a localized EGF receptor (EG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 122 11  شماره 

صفحات  -

تاریخ انتشار 1996